Main menu

More about the NBTs

WHAT IS IN THE NATIONAL BENCHMARK TESTS?

Download exemplar questions for the Mathematics (MAT) test.

Download exemplar questions for the Academic and Quantitative Literacy (AQL) test.

The NBTs focus on academic readiness for university study. Each test requires you to apply prior learning - what you know and are able to do - to materials that reflect expectations for first year students in university programmes. A brief summary of the skills assessed in each test follows:

ACADEMIC LITERACY

QUANTITATIVE LITERACY

  • Make meaning from academic text;
  • Understand vocabulary related to academic study;
  • Evaluate evidence used to support claims made by writers;
  • Extrapolate and draw inferences and conclusions from text;
  • Differentiate main idea from supporting ideas in the overall and specific organisation of a passage;
  • Identify text differences as related to the writers’ purposes, audiences, and forms of communication;
  • Understand how syntax and punctuation are used to express meaning; and
  • Understand basic numerical concepts used in text.
  •  Apply quantitative procedures and reasoning in symbolic and non-symbolic situations;
  • Apply information from a variety of tables, graphs, charts and text;
  • Integrate information obtained from multiple sources;
  • Perform multiple-step calculations using information presented with text, symbols, and graphs;
  • Identify trends and patterns in various situations;
  • Apply properties of simple geometric shapes to determine measurements; and
  • Interpret quantitative information presented verbally, symbolically, and graphically.

MATHEMATICS

  • Understand and apply properties of the real number system, including surds and exponents;
  • Recognise and use patterns, including sequences and series;
  • Apply relationships such as ratios and percentages in a variety of contexts;
  • Apply the results of algebraic manipulations with equations and inequalities;
  • Understand the function concept and identify properties of functions
  • Interpret transformations of functions represented algebraically or graphically;
  • Identify relationships between graphs and their equations, or inequalities and the regions they describe;
  • Apply trigonometric identities and concepts in solving problems;
  • Understand properties and interpret representations of two-dimensional and three-dimensional shapes;
  • Apply principles of analytic geometry;
  • Interpret various representations and measures of data; and
  • Use logical skills in making deductions and determining the validity of given assertions.